34 research outputs found

    Moving-edge detection via heat flow analogy

    No full text
    In this paper, a new and automatic moving-edge detection algorithm is proposed, based on using the heat flow analogy. This algorithm starts with anisotropic heat diffusion in the spatial domain, to remove noise and sharpen region boundaries for the purpose of obtaining high quality edge data. Then, isotropic and linear heat diffusion is applied in the temporal domain to calculate the total amount of heat flow. The moving-edges are represented as the total amount of heat flow out from the reference frame. The overall process is completed by non-maxima suppression and hysteresis thresholding to obtain binary moving edges. Evaluation, on a variety of data, indicates that this approach can handle noise in the temporal domain because of the averaging inherent of isotropic heat flow. Results also show that this technique can detect moving-edges in image sequences, without background image subtraction

    Team behaviour analysis in sports using the poisson equation

    Get PDF
    We propose a novel physics-based model for analysing team play- ers’ positions and movements on a sports playing field. The goal is to detect for each frame the region with the highest population of a given team’s players and the region towards which the team is moving as they press for territorial advancement, termed the region of intent. Given the positions of team players from a plan view of the playing field at any given time, we solve a particular Poisson equation to generate a smooth distribution. The proposed distribu- tion provides the likelihood of a point to be occupied by players so that more highly populated regions can be detected by appropriate thresholding. Computing the proposed distribution for each frame provides a sequence of distributions, which we process to detect the region of intent at any time during the game. Our model is evalu- ated on a field hockey dataset, and results show that the proposed approach can provide effective features that could be used to gener- ate team statistics useful for performance evaluation or broadcasting purposes

    On using an analogy to heat flow for shape extraction

    No full text
    We introduce a novel evolution-based segmentationalgorithm which uses the heat flow analogy togain practical advantage. The proposed algorithm consistsof two parts. In the first part, we represent a particular heatconduction problem in the image domain to roughly segmentthe region of interest. Then we use geometric heatflow to complete the segmentation, by smoothing extractedboundaries and removing noise inside the prior segmentedregion. The proposed algorithm is compared with activecontour models and is tested on synthetic and medicalimages. Experimental results indicate that our approachworks well in noisy conditions without pre-processing. Itcan detect multiple objects simultaneously. It is alsocomputationally more efficient and easier to control andimplement in comparison with active contour models

    On Using Physical Analogies for Feature and Shape Extraction in Computer Vision

    No full text
    There is a rich literature of approaches to image feature extraction in computer vision. Many sophisticated approaches exist for low- and high-level feature extraction but can be complex to implement with parameter choice guided by experimentation, but impeded by speed of computation. We have developed new ways to extract features based on notional use of physical paradigms, with parameterisation that is more familiar to a scientifically-trained user, aiming to make best use of computational resource. We describe how analogies based on gravitational force can be used for low-level analysis, whilst analogies of water flow and heat can be deployed to achieve high-level smooth shape detection. These new approaches to arbitrary shape extraction are compared with standard state-of-art approaches by curve evolution. There is no comparator operator to our use of gravitational force. We also aim to show that the implementation is consistent with the original motivations for these techniques and so contend that the exploration of physical paradigms offers a promising new avenue for new approaches to feature extraction in computer vision

    On Using Physical Analogies for Feature and Shape Extraction in Computer Vision

    No full text
    There is a rich literature of approaches to image feature extraction in computer vision. Many sophisticated approaches exist for low- and for high-level feature extraction but can be complex to implement with parameter choice guided by experimentation, but with performance analysis and optimization impeded by speed of computation. We have developed new feature extraction techniques on notional use of physical paradigms, with parametrization aimed to be more familiar to a scientifically trained user, aiming to make best use of computational resource. This paper is the first unified description of these new approaches, outlining the basis and results that can be achieved. We describe how gravitational force can be used for low-level analysis, while analogies of water flow and heat can be deployed to achieve high-level smooth shape detection, by determining features and shapes in a selection of images, comparing results with those by stock approaches from the literature. We also aim to show that the implementation is consistent with the original motivations for these techniques and so contend that the exploration of physical paradigms offers a promising new avenue for new approaches to feature extraction in computer vision

    Player detection in field sports

    Get PDF
    We describe a method for player detection in field sports with a fixed camera set-up based on a new player feature extraction strategy. The proposed method detects players in static images with a sliding window technique. First, we compute a binary edge image and then the detector window is shifted over the edge regions. Given a set of binary edges in a sliding window, we introduce and solve a particular diffusion equation to generate a shape information image. The proposed diffusion to generate a shape information image is the key stage and the main theoretical contribution in our new algorithm. It removes the appearance variations of an object while preserving the shape information. It also enables the use of polar and Fourier transforms in the next stage to achieve scale and rotation invariant feature extraction. A Support Vector Machine (SVM) classifier is used to assign either player or non-player class inside a detector window. We evaluate our approach on three different field hockey datasets. In general, results show that the proposed feature extraction is effective, and performs competitive results compared to the state-of-the-art methods

    Abnormal crowd behavior detection using novel optical flow-based features

    Get PDF
    In this paper, we propose a novel optical flow based features for abnormal crowd behaviour detection. The proposed feature is mainly based on the angle difference computed between the optical flow vectors in the current frame and in the previous frame at each pixel location. The angle difference information is also combined with the optical flow magnitude to produce new, effective and direction invariant event features. A one-class SVM is utilized to learn normal crowd behavior. If a test sample deviates significantly from the normal behavior, it is detected as abnormal crowd behavior. Although there are many optical flow based features for crowd behaviour analysis, this is the first time the angle difference between optical flow vectors in the current frame and in the previous frame is considered as a anomaly feature. Evaluations on UMN and PETS2009 datasets show that the proposed method performs competitive results compared to the state-of-the-art methods

    Action recognition based on sparse motion trajectories

    Get PDF
    We present a method that extracts effective features in videos for human action recognition. The proposed method analyses the 3D volumes along the sparse motion trajectories of a set of interest points from the video scene. To represent human actions, we generate a Bag-of-Features (BoF) model based on extracted features, and finally a support vector machine is used to classify human activities. Evaluation shows that the proposed features are discriminative and computationally efficient. Our method achieves state-of-the-art performance with the standard human action recognition benchmarks, namely KTH and Weizmann datasets

    An evaluation of local action descriptors for human action classification in the presence of occlusion

    Get PDF
    This paper examines the impact that the choice of local de- scriptor has on human action classifier performance in the presence of static occlusion. This question is important when applying human action classification to surveillance video that is noisy, crowded, complex and incomplete. In real-world scenarios, it is natural that a human can be occluded by an object while carrying out different actions. However, it is unclear how the performance of the proposed action descriptors are affected by the associated loss of information. In this paper, we evaluate and compare the classification performance of the state-of-art human local action descriptors in the presence of varying degrees of static occlusion. We consider four different local action descriptors: Trajectory (TRAJ), Histogram of Orientation Gradient (HOG), Histogram of Orientation Flow (HOF) and Motion Boundary Histogram (MBH). These descriptors are combined with a standard bag-of-features representation and a Support Vector Machine classifier for action recognition. We investigate the performance of these descriptors and their possible combinations with respect to varying amounts of artificial occlusion in the KTH action dataset. This preliminary investigation shows that MBH in combination with TRAJ has the best performance in the case of partial occlusion while TRAJ in combination with MBH achieves the best results in the presence of heavy occlusion

    SAVASA project @ TRECVID 2012: interactive surveillance event detection

    Get PDF
    In this paper we describe our participation in the interactive surveillance event detection task at TRECVid 2012. The system we developed was comprised of individual classifiers brought together behind a simple video search interface that enabled users to select relevant segments based on down~sampled animated gifs. Two types of user -- `experts' and `end users' -- performed the evaluations. Due to time constraints we focussed on three events -- ObjectPut, PersonRuns and Pointing -- and two of the five available cameras (1 and 3). Results from the interactive runs as well as discussion of the performance of the underlying retrospective classifiers are presented
    corecore